61 research outputs found

    Endovascular Treatment of Endoleaks Following EVAR

    Get PDF

    A neglected event in endovascular repair of aortic dissection: acute blood pressure variability during aortic angiography

    Get PDF
    [Purpose]To investigate acute blood pressure change during aortic angiography in aortic dissection endovascular repair, and analyse the potential risk of this incident.[Method]24 patients with aortic dissection underwent endovascular repair in department of vascular surgery of Changhai hospital between May 2016 and July 2016 were enrolled in this research. Patients were divided into two groups: patients underwent general anesthesia and patients underwent lumbar anesthesia. Blood pressure was monitored by intro-artery catheter. Blood pressure readings were recorded every 10 seconds during the procedure of angiography. Outcome of these patients were observed in hospital. [Result] All patients received endovascular aortic repair, with 19 underwent lumbar anesthesia and 5 underwent general anesthesia. Patients underwent lumbar anesthesia presented temporary blood pressure decrease with average of -11.2±13.4mmHg, while patients underwent general anesthesia presented temporary blood pressure elevation with average of 4.2±6.3mmHg. The Maximum time interval were 26.7±12.7s vs25.8±15.8s, and difference in blood pressure between pre- and post-angiography were 1.53±4.4mmHg vs. 4.6±3.4mmHg, both without significance (P>0.05).[Conclusion] Angiography is an effective factor influencing blood pressure during TEVAR, it’s a potential “trigger” of intra-operative cardiovascular events. Blood pressure should be kept on proper level to avoid cardiovascular events induced by blood pressure variability with angiography. Angiography with General anesthesia has less influence on blood pressure than with lumbar anesthesia

    Influence of material property variability on the mechanical behaviour of carotid atherosclerotic plaques: a 3D fluid-structure interaction analysis.

    Get PDF
    Mechanical analysis has been shown to be complementary to luminal stenosis in assessing atherosclerotic plaque vulnerability. However, patient-specific material properties are not available and the effect of material properties variability has not been fully quantified. Media and fibrous cap (FC) strips from carotid endarterectomy samples were classified into hard, intermediate and soft according to their incremental Young's modulus. Lipid and intraplaque haemorrhage/thrombus strips were classified as hard and soft. Idealised geometry-based 3D fluid-structure interaction analyses were performed to assess the impact of material property variability in predicting maximum principal stress (Stress-P1 ) and stretch (Stretch-P1 ). When FC was thick (1000 or 600 µm), Stress-P1 at the shoulder was insensitive to changes in material stiffness, whereas Stress-P1 at mid FC changed significantly. When FC was thin (200 or 65 µm), high stress concentrations shifted from the shoulder region to mid FC, and Stress-P1 became increasingly sensitive to changes in material properties, in particular at mid FC. Regardless of FC thickness, Stretch-P1 at these locations was sensitive to changes in material properties. Variability in tissue material properties influences both the location and overall stress/stretch value. This variability needs to be accounted for when interpreting the results of mechanical modelling.This research is supported by BHF PG/11/74/29100, HRUK RG2638/14/16, National Natural Science Foundation of China 81270386 and 81170291 and the NIHR Cambridge Biomedical Research Centre. Mr Yuan is supported by China Scholarship Council (CSC) Cambridge Scholarship.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/cnm.272

    A uni-extension study on the ultimate material strength and extreme extensibility of atherosclerotic tissue in human carotid plaques.

    Get PDF
    Atherosclerotic plaque rupture occurs when mechanical loading exceeds its material strength. Mechanical analysis has been shown to be complementary to the morphology and composition for assessing vulnerability. However, strength and stretch thresholds for mechanics-based assessment are currently lacking. This study aims to quantify the ultimate material strength and extreme extensibility of atherosclerotic components from human carotid plaques. Tissue strips of fibrous cap, media, lipid core and intraplaque hemorrhage/thrombus were obtained from 21 carotid endarterectomy samples of symptomatic patients. Uni-extension test with tissue strips was performed until they broke or slid. The Cauchy stress and stretch ratio at the peak loading of strips broken about 2mm away from the clamp were used to characterize their ultimate strength and extensibility. Results obtained indicated that ultimate strength of fibrous cap and media were 158.3 [72.1, 259.3] kPa (Median [Inter quartile range]) and 247.6 [169.0, 419.9] kPa, respectively; those of lipid and intraplaque hemorrhage/thrombus were 68.8 [48.5, 86.6] kPa and 83.0 [52.1, 124.9] kPa, respectively. The extensibility of each tissue type were: fibrous cap - 1.18 [1.10, 1.27]; media - 1.21 [1.17, 1.32]; lipid - 1.25 [1.11, 1.30] and intraplaque hemorrhage/thrombus - 1.20 [1.17, 1.44]. Overall, the strength of fibrous cap and media were comparable and so were lipid and intraplaque hemorrhage/thrombus. Both fibrous cap and media were significantly stronger than either lipid or intraplaque hemorrhage/thrombus. All atherosclerotic components had similar extensibility. Moreover, fibrous cap strength in the proximal region (closer to the heart) was lower than that of the distal. These results are helpful in understanding the material behavior of atherosclerotic plaques.This research is supported by BHF PG/11/74/29100, HRUK RG2638/14/16, the NIHR Cambridge Biomedical Research Centre and National Natural Science Foundation of China (81170291).This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.jbiomech.2015.09.03

    Layer- and Direction-Specific Material Properties, Extreme Extensibility and Ultimate Material Strength of Human Abdominal Aorta and Aneurysm: A Uniaxial Extension Study.

    Get PDF
    Mechanical analysis has the potential to provide complementary information to aneurysm morphology in assessing its vulnerability. Reliable calculations require accurate material properties of individual aneurysmal components. Quantification of extreme extensibility and ultimate material strength of the tissue are important if rupture is to be modelled. Tissue pieces from 11 abdomen aortic aneurysm (AAA) from patients scheduled for elective surgery and from 8 normal aortic artery (NAA) from patients who scheduled for kidney/liver transplant were collected at surgery and banked in liquid nitrogen with the use of Cryoprotectant solution to minimize frozen damage. Prior to testing, specimen were thawed and longitudinal and circumferential tissue strips were cut from each piece and adventitia, media and thrombus if presented were isolated for the material test. The incremental Young's modulus of adventitia of NAA was direction-dependent at low stretch levels, but not the media. Both adventitia and media had a similar extreme extensibility in the circumferential direction, but the adventitia was much stronger. For aneurysmal tissues, no significant differences were found when the incremental moduli of adventitia, media or thrombus in both directions were compared. Adventitia and media from AAA had similar extreme extensibility and ultimate strength in both directions and thrombus was the weakest material. Adventitia and media from AAA were less extensible compared with those of NAA, but the ultimate strength remained similar. The material properties, including extreme extensibility and ultimate strength, of both healthy aortic and aneurysmal tissues were layer-dependent, but not direction-dependent.This research is supported by BHF PG/11/74/ 29100, HRUK RG2638/14/16, the NIHR Cambridge Biomedical Research Centre, and National Natural Science Foundation of China (81170291).This is the final version. It was first published by Springer at http://dx.doi.org/10.1007/s10439-015-1323-

    Endovascular Repair of Ascending Aortic Dissection A Novel Treatment Option for Patients Judged Unfit for Direct Surgical Repair

    Get PDF
    ObjectivesThis paper sought to report the outcomes of patients who are considered unfit for urgent surgical repair of ascending aortic dissections (AADs) who were treated using a novel endovascular repair strategy.BackgroundAAD is best treated by direct surgical repair. Patients who are unable to undergo this form of treatment have poor prognoses. Previously, clinical case reports related to endovascular repair of AAD have been controversial.MethodsBetween May 2009 and January 2011, 41 consecutive patients with AAD were treated in our institution. Fifteen patients were considered poor candidates for direct surgical repair and subsequently underwent the endovascular repair.ResultsThe nature of the referral process to our tertiary care facility made the median time from aortic dissection onset to treatment 25.5 days (range: 6 to 353 days). Dissections in 5 patients (33.3%) were considered acute, and those in 10 patients (66.7%) were considered chronic. The rate of successful stent-graft deployment was 100%, and there were no major morbidities or deaths in the perioperative period. Median follow-up was 26 months (range: 16 to 35 months). One new dissection occurred in the aortic arch at 3 months and was treated with a branched endograft. Significant enlargements of true lumens and decreases of false lumens and overall thoracic aorta were noted after the procedures.ConclusionsEndovascular repair of AAD was an appropriate treatment option in patients who were considered poor candidates for traditional direct surgical repair by the clinical criteria used in our institution. A larger series of cases with longer follow-up is needed to substantiate these results

    A Floating Thrombus Anchored at the Proximal Anastomosis of a Woven Thoracic Graft Mimicking a Genuine Aortic Dissection

    Get PDF
    An aortoesophageal fistula following surgery for a ruptured 6.6-cm thoracic aneurysm in a 69-yearold female was repaired using a 34-mm woven prosthetic graft. A follow-up computed tomography (CT) scan at 10 days postoperatively revealed a dissection-like picture in the region of the graft, which was treated conservatively. The patient eventually died from sepsis and multiorgan failure. At autopsy, the graft was retrieved in situ and studied by detailed gross, microscopy, and scanning electron microscopy (SEM) examination. Gross observation confirmed that the dissection resulted from the rolling of the internal capsule downstream. A massive thrombus anchored at the proximal anastomosis and held by a narrow head was also noted. The thrombus demonstrated reorganization in the area of the anastomosis, with a false lumen in its distal half. The reminder of the thrombus consisted of layered fibrin. After gross examination, the fabric graft was found to be flawless. Additional detailed studies were also done using microscopy, SEM, and gross examination
    corecore